
1

University of Notre Dame

1Lecture 24 - Architectural Support for Virtual Memory

Lecture 24
Virtual Memory

2

University of Notre Dame

2Lecture 24 - Architectural Support for Virtual Memory

Virtual Memory
• Some facts of computer life…

– Computers run lots of processes simultaneously
– No full address space of memory for each process

• Physical memory expensive and not dense - thus, too small

– Must share smaller amounts of physical memory among many
processes

• Virtual memory is the answer!
– Divides physical memory into blocks, assigns them to different

processes
• Compiler assigns data to a “virtual” address.

– VA translated to a real/physical somewhere in memory

• Allows program to run anywhere; where is determined by a
particular machine, OS

– + Business: common SW on wide product line (w/o VM, sensitive to actual
physical memory size)

3

University of Notre Dame

3Lecture 24 - Architectural Support for Virtual Memory

Virtual address space
greater than

Logical address space

Physical

Address

Space

Logical

Address

Space

4

University of Notre Dame

4Lecture 24 - Architectural Support for Virtual Memory

The gist of virtual memory

• Relieves problem of making
a program that was too
large to fit in physical
memory – well…fit!

• Allows program to run in
any location in physical
memory

– Really useful as you
might want to run same
program on lots
machines…

0

4

8

12

Virtual

Address

A

B

C

D

0

4K

8K

12K

Physical

Address

C

A

B

D Disk

16K

20K

24K

28K

Virtual Memory

Physical

Main Memory

Logical program is in contiguous VA space; here, pages: A, B, C, D;
(3 are in main memory and 1 is located on the disk)

5

University of Notre Dame

5Lecture 24 - Architectural Support for Virtual Memory

Some definitions and cache
comparisons

• The bad news:
– In order to understand exactly how virtual memory

works, we need to define some terms

• The good news:
– Virtual memory is very similar to a cache structure

• So, some definitions/“analogies”
– A “page” or “segment” of memory is analogous to a

“block” in a cache
– A “page fault” or “address fault” is analogous to a

cache miss

“real”/physical
memory

so, if we go to main memory and our data
isn’t there, we need to get it from disk…

6

University of Notre Dame

6Lecture 24 - Architectural Support for Virtual Memory

Translating
VA to PA

sort of like
finding right
cache entry
with division

of PA

7

University of Notre Dame

7Lecture 24 - Architectural Support for Virtual Memory 8

University of Notre Dame

8Lecture 24 - Architectural Support for Virtual Memory

Might think
about these 2
simultaneously

9

University of Notre Dame

9Lecture 24 - Architectural Support for Virtual Memory 10

University of Notre Dame

10Lecture 24 - Architectural Support for Virtual Memory

Can someone
explain these

numbers?
Compared to thit?

Idea:
Bring large

chunks of data
from disk to

memory
(how big is OS?)

11

University of Notre Dame

11Lecture 24 - Architectural Support for Virtual Memory

Virtual Memory

• Timing’s tough with virtual memory:

– AMAT = Tmem + (1-h) * Tdisk

– = 100nS + (1-h) * 25,000,000nS

• h (hit rate) had to be incredibly (almost unattainably)
close to perfect to work

• so: VM is a “cache” but an odd one.

12

University of Notre Dame

12Lecture 24 - Architectural Support for Virtual Memory

Introduction to page translation
(on the board)

13

University of Notre Dame

13Lecture 24 - Architectural Support for Virtual Memory

Test Yourself
A processor asks for the contents of virtual memory address 0x10020.
The paging scheme in use breaks this into a VPN of 0x10 and an offset
of 0x020.

PTR (a CPU register that holds the address of the page table) has a
value of 0x100 indicating that this processes page table starts at
location 0x100.

The machine uses word addressing and the page table entries are each
one word long.

PTR 0x100

Memory Reference

VPN OFFSET

0x010 0x020

14

University of Notre Dame

14Lecture 24 - Architectural Support for Virtual Memory

Test Yourself
ADDR CONTENTS

0x00000 0x00000

0x00100 0x00010

0x00110 0x00022

0x00120 0x00045

0x00130 0x00078

0x00145 0x00010

0x10000 0x03333

0x10020 0x04444

0x22000 0x01111

0x22020 0x02222

0x45000 0x05555

0x45020 0x06666

• What is the physical address

calculated?

1. 10020

2. 22020

3. 45000

4. 45020

5. none of the above

PTR 0x100

Memory Reference

VPN OFFSET

0x010 0x020

15

University of Notre Dame

15Lecture 24 - Architectural Support for Virtual Memory

Test Yourself
ADDR CONTENTS

0x00000 0x00000

0x00100 0x00010

0x00110 0x00022

0x00120 0x00045

0x00130 0x00078

0x00145 0x00010

0x10000 0x03333

0x10020 0x04444

0x22000 0x01111

0x22020 0x02222

0x45000 0x05555

0x45020 0x06666

• What is the physical address

calculated?

• What is the contents of this

address returned to the

processor?

• How many memory accesses

in total were required to obtain

the contents of the desired

address?

PTR 0x100

Memory Reference

VPN OFFSET

0x010 0x020

16

University of Notre Dame

16Lecture 24 - Architectural Support for Virtual Memory

17

University of Notre Dame

17Lecture 24 - Architectural Support for Virtual Memory

Review: Paging Hardware

CPU page offset

Physical
Memory

page table

frame

frame offset

page

32 32

18

University of Notre Dame

18Lecture 24 - Architectural Support for Virtual Memory

Review: Address Translation

Program Paging Main Memory

Virtual Address

Register

Page Table

Page

Frame

Offset

P#

Frame #

Page Table Ptr

Page # Offset Frame # Offset

+

19

University of Notre Dame

19Lecture 24 - Architectural Support for Virtual Memory 20

University of Notre Dame

20Lecture 24 - Architectural Support for Virtual Memory

Another Example

0

1

2

3

5

6

1

2

Page Table

101

110

001

010

00

01

10

11

Logical memory

0 a

1 b

2 c

3 d

4 e

5 f

6 g

7 h

8 i

9 j

10 k

11 l

12 m

13 n

14 o

15 p

Physical memory

0

1

2

3

4 i

5 j

6 k

7 l

8 m

9 n

10 o

11 p

12

13

14

15

16

17

18

19

20 a

21 b

22 c

23 d

24 e

25 f

26 g

27 h

28

29

30

31

21

University of Notre Dame

21Lecture 24 - Architectural Support for Virtual Memory

Block replacement

• Which block should be replaced on a virtual memory
miss?
– Again, we’ll stick with the strategy that it’s a good

thing to eliminate page faults

– Therefore, we want to replace the LRU block
• Many machines use a “use” or “reference” bit

• Periodically reset

• Gives the OS an estimation of which pages are referenced

22

University of Notre Dame

22Lecture 24 - Architectural Support for Virtual Memory

Writing a block

• What happens on a write?
– We don’t even want to think about a write through

policy!
• Time with accesses, VM, hard disk, etc. is so great that
this is not practical

– Instead, a write back policy is used with a dirty bit to
tell if a block has been written

23

University of Notre Dame

23Lecture 24 - Architectural Support for Virtual Memory

Introduction to TLBs

24

University of Notre Dame

24Lecture 24 - Architectural Support for Virtual Memory

Page tables and lookups…

• 1. it’s slow! We’ve turned every access to memory
into two accesses to memory
– solution: add a specialized “cache” called a “translation
lookaside buffer (TLB)” inside the processor

– punt this issue for a lecture (until Thursday)

• 2. it’s still huge!
– even worse: we’re ultimately going to have a page table
for every process. Suppose 1024 processes, that’s 4GB
of page tables!

25

University of Notre Dame

25Lecture 24 - Architectural Support for Virtual Memory

Paging/VM

CPUCPU 42 356

Physical
Memory

page table

356

i

Operating

System

Disk

26

University of Notre Dame

26Lecture 24 - Architectural Support for Virtual Memory

Paging/VM

CPUCPU 42 356

Physical
Memory

356

page table

i

Operating

System

Disk

Place page table in physical memory

However: this doubles the time per memory access!!

27

University of Notre Dame

27Lecture 24 - Architectural Support for Virtual Memory

Paging/VM

CPUCPU 42 356

Physical
Memory

356

page table

i

Operating

System

Disk

Special-purpose cache for translations

Historically called the TLB: Translation Lookaside Buffer

Cache!

28

University of Notre Dame

28Lecture 24 - Architectural Support for Virtual Memory

Let’s talk more about TLBs on
the board

29

University of Notre Dame

29Lecture 24 - Architectural Support for Virtual Memory

Review: Translation Cache
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

Note: 128-256 entries times 4KB-16KB/entry is only 512KB-4MB
the L2 cache is often bigger than the “span” of the TLB.

CPU
TLB

Lookup
Cache

Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

missTranslation
with a TLB

30

University of Notre Dame

30Lecture 24 - Architectural Support for Virtual Memory

Review: Translation Cache
A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Page # Physical Frame # Dirty Ref Valid Access

Really just a cache (a special-purpose cache) on the page table mappings

TLB access time comparable to cache access time
 (much less than main memory access time)

tag

31

University of Notre Dame

31Lecture 24 - Architectural Support for Virtual Memory

An example of a TLB

Page frame addr.
Page

Offset
<30> <13>

V

<1>

Tag

<30>

Phys. Addr.

<21>

... …

1 2

32:1 Mux

3

4

R

<2>

W

<2>

…

<21>

<13>

(Low-order 13

bits of addr.)

(High-order 21

bits of addr.)

34-bit

 physical

address

Read/write policies and permissions…

32

University of Notre Dame

32Lecture 24 - Architectural Support for Virtual Memory

The “big picture” and TLBs

• Address translation is usually on the critical path…
– …which determines the clock cycle time of the µP

• Even in the simplest cache, TLB values must be read
and compared

• TLB is usually smaller and faster than the cache-
address-tag memory
– This way multiple TLB reads don’t increase the cache

hit time

• TLB accesses are usually pipelined b/c its so
important!

33

University of Notre Dame

33Lecture 24 - Architectural Support for Virtual Memory

The “big picture” and TLBs

Try to read

from cache

TLB accessVirtual Address

TLB Hit?

Write?Try to read

from page

table

Page fault?

Replace

page from

disk

TLB miss

stall

Set in TLB

Cache hit?

Cache miss

stall

Deliver data

to CPU

Cache/buffer

memory write

Yes

Yes

YesYes

No

No No

No

